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We introduce a stochastic model of growing networks where both the number of new nodes which join the
network and the number of connections vary stochastically. We provide an exact mapping between this model
and the zero-range process, and calculate analytically the degree distribution for any given evolution rule. We
argue that this mapping can be used to infer a possible evolution rule for any given network. This is being
demonstrated for a protein-protein interaction network of Saccharomyces cerevisiae.
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The study of networks has been gaining recognition as a
fundamental tool in understanding the dynamical behavior
and response of real systems. This recognition is arising from
different fields such as biology, social systems, technological
systems, etc. �1–5�. Different network models have been pro-
posed to study and understand these systems, which have
underlying network structure. The Erdös and Rényi random
networks model is one of the oldest, and shows that the
probability �p�k�� of a node having degree k follows expo-
nential distributions, p�k��exp�−k� �6�. Many real world
networks, however, show scalefree behavior, p�k��k−�, with
a few very striking examples of the World Wide Web
�WWW� and cellular networks �7,8� �for a review of scale-
free networks see �2��. In the WWW, the number of incom-
ing links follows a power law with a value of ��2.1 �7�, and
analysis of metabolic networks of 43 organisms reveals that
the number of chemical reactions �link� in which a substrate
�node� is involved shows power law distribution, with the
exponent varying between 2.0 and 2.4 �8�.

To capture scalefree behavior of real world networks,
Barabási-Albert �BA� proposed a growing network model
based on the preferential attachment of the nodes �2,9�. In the
BA model, each new node is connected with some old nodes
with a probability linearly proportional to the degree of the
node, u�k�� �k+��. This model gives rise to the scalefree
network with degree distribution following power law p�k�
�k−�, a value of �=3+� �10,11�. Since then, several varia-
tions of the BA algorithm have been proposed. An algorithm
suggested by Dorgovtsev and Mendes based on the aging of
the nodes also gives rise to scalefree behavior �12�. Krapiv-
sky et al. also obtained an analytical solution for a different
attachment function u�k��k� �10�.

In this paper we introduce stochasticity to the growing
network models. Starting with the few initially connected
nodes, a network in our model evolves as follows. At each
time step, n new nodes join the network and make m con-
nections with existing nodes. Both m and n are taken as
stochastic variables. Each new connection is made with a
probability which depends on the degree of the node to be
connected, and needs not be preferential. A special case of

our model with linear connection probability and n=1 corre-
sponds to the BA algorithm. Note that our evolution rule,
being stochastic, naturally captures various stochastic effects
which are always present during the evolution of any real
system.

First we show an explicit mapping between our model
and the zero-range process �ZRP�, an exactly solvable model
in nonequilibrium physics �13�, which provides an exact re-
lation between any attachment rule u�k� and degree distribu-
tion p�k� of the growing networks. So far, there have been
partial attempts to solve the Barabási-Albert model. Dorgovt-
sev et al. have done analytical calculations for linear u�k�
�11� and for certain other forms �14�. Also, the exact result is
known for u�k��k� �10�. Here, we provide exact degree dis-
tribution for any arbitrary evolution rule u�k�. This relation,
being exact, can be inverted to infer a possible evolution rule
for any given real-world network. Second, we show that the
choice of stochastic parameters does not alter the degree dis-
tribution of the network. It only affects the correlations or
statistical properties of the modules. Last, we apply our
methodology to a real world network and derive a stochastic
evolution rule which captures the exact degree distribution.
We argue that this method can be used to generate a growing
network with any desired degree distribution.

A generic algorithm for a growing network would be as
follows. Starting from a small connected network, one brings
n new nodes at each iteration time t and then each of these n
nodes connects to m existing nodes. In general, n and m are
stochastically varying integers in �1,nmax� and �1,mmax�, re-
spectively, and their distributions are ��n� and h�m�. These
variations are not just the generalizations of �9�; it is quite
natural that a variable number of nodes joins realistic net-
works and make connections which vary from one node to
the other. The probability that any given new node i makes a
link with one of the existing nodes j is w�k�j� , t�, where k�j�
is the degree of j and � jw�k�j� , t�=1.

Our first task would be to find the steady state degree
distribution p�k� of these generic networks as t→�. Let
M�k , t� be the number of nodes having k links at time t.
Since � jw(k�j� , t)=1, we may take w�k , t�=u�k� /v�t� where

v�t� = �
k

u�k�M�k,t� . �1�

Here u�k� is considered to be a generic function, and need
not be an increasing function corresponding to the preferen-
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tial attachment discussed in �9,10�. The size of the network,
and thus M�k , t�, increases with iteration time t. The growth
rate of M�k , t� is

dM�k,t�
dt

= m̄n̄�u�k − 1�
v�t�

M�k − 1,t� −
u�k�
v�t�

M�k,t�� + n̄h�k� ,

�2�

where n̄=�n=1
nmaxn��n� is the average number of nodes which

join the network in each iteration step t. Equation �2� is con-
strained by M�0, t�=0, which ensures that every node in the
network has nonzero links. The initial condition is M�k ,0�
=mmax�k,1, i.e., we start with a network of size mmax to avoid
multiple connections. Note that �2� must be supplemented by
the growth rate of nodes,

dN�t�
dt

= n̄ . �3�

In general, n̄ depends on t �particularly when � explicitly
depends on t�. First let us take n̄ to be independent of t. The
degree distribution p�k� in the steady state is defined as

p�k� = lim
t→�
	M�k,t�

N�t� 
 , �4�

where averaging �¯� is done over realizations. Clearly the
steady state is reached only if M�k , t��N�t� as t→�. Thus,
in the steady state we must have

M�k,t� = p�k�N�t� . �5�

One can safely assume that this product form �5� holds even
for t	� �evidence in favor of this ansatz is provided later in
this article�, which leads Eq. �2� to

1

m̄

v�t�
N�t�

=
u�k − 1�p�k − 1� − u�k�p�k�

p�k� − h�k�
. �6�

The left- �right-� hand side of the above equation is indepen-
dent of k�t�, which can be satisfied only by a constant. Tak-
ing this constant to be 
,

p�k� =
u�k − 1�

 + u�k�

p�k − 1� +

h�k�


 + u�k�
, �7�


 =
1

m̄

v�t�
N�t�

=
1

m̄
�

k

u�k�p�k� . �8�

Before proceeding to solve the difference Eq. �7� let us
note a few things. First, p�k� is in fact normalized, which can
be proved by summing Eq. �7� for all k. Second, n̄ do not
appear in these equations, implying that n̄ can be fixed to any
arbitrary value without changing the degree distribution p�k�.
However, since n̄ governs the evolution dynamics of the net-
work it is expected to affect the correlations �even though the
steady state p�k� is the same�.

Equation �7� can be solved to obtain

p�k� =



u�k� �
m=1

mmax

h�m�

j=m

k
u�j�


 + u�j�
. �9�

Here, we have used the natural boundary condition p�0�=0.
Although �9� provides an exact expression of p�k�, the main
difficulty still remains in finding 
, which has to be self-
consistently determined using �7� and �8�.

Now, let us apply this exact result �9� to the most well-
studied growing networks, where only one node having m0
links joins the existing network at each time step, i.e., n̄=1
and h�m�=�m,m0

. Thus, only a single term m=m0 in Eq. �9�
survives under the sum, and we have p�k�=0 for k	m0. For
k�m0,

p�k� =



u�k� 

j=m0

k
u�j�


 + u�j�
. �10�

If we use the BA algorithm with preferential attachment
rule u�k�=k+�, the degree distribution becomes

p�k� = 

��
 + � + m0�

��1 + 
 + � + k�
��� + k�

��� + m0�
, �11�

which can be used further to obtain 
=2+� /m0 from �8�.
Clearly, for the large values of k, p�k��k−1−
 giving rise to
�=3+� /m0. In the original formulation of Barabási-Albert
�9� the attachment rule is u�k�=k �i.e., �=0� which, thus,
generates a scalefree network with �=3.

In the following we discuss the mapping of our growing
network model with the ZRP. First we consider the model
without any stochasticity. In the ZRP, particles hop between
the sites of a lattice with rate w�k� where k is the occupancy
of the departure site. The steady-state distribution of particles

�k� in the ZRP can be calculated exactly as 
�k�
=N
 j=1

k w�k�−1, where N is a normalization constant. Com-
paring the steady state distribution of the ZRP with �10�, one
can identify that 
�k�= p�k�u�k� with transfer rate of particles
in the ZRP, satisfying

w�k� = �1 +



u�k�
for k � m0

1 for k 	 m0.

�12�

Obviously, Eq. �8� is nothing but the normalization condition
for 
�k�. Such a mapping is useful, because, for any growing
network with attachment rule u�k�, Eq. �12� finds an equiva-
lent particle transfer rate w�k� of the ZRP, and since steady
state distribution of particles 
�k� is known exactly for the
ZRP �13� one effectively finds degree distribution p�k�
�
�k� /u�k�.

To explain the importance of this mapping, let us take the
example where u�k�=k�. In this case, the ZRP predicts �13�
the following three different possibilities: �a� 0	�
	1:
�k� is a stretched exponential and thus p�k�
�exp�−
k1−� / �1−���k−�, �b� �=1: in this case one gets
p�k��k−�
+1�, and �c� ��1: here 
�k� is more complex but
asymptotically reaches a constant, resulting in asymptotic
degree distribution p�k��k−�. All these results agree with the
u�k�=k� case considered in �10�.

Let us emphasize at this point that although writing a
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closed form expression of p�k� for generic u�k� is difficult,
asymptotic behavior can be obtained easily using �10� or
�14�. One simple way is to take the continuum limit, by
choosing x=k /K, where K is the maximum possible links �an
arbitrarily large number�. The difference equation �7� then
becomes a differential equation

−
1

p�x�
d

dx
p�x�u�x� = 
 ,

with boundary condition p�x0�= 
 / u�x0� , where x0=m0 /K. A
formal solution is then

p�x� =



u�x0�
1

u�x�
exp�− 
�x dx�

u�x��
� , �13�


 =
1

x0
� dk u�x�p�x� . �14�

It is easy to check that the above equations provide correct
asymptotic values for exactly solvable cases, u�k�=k+� and
u�k�=k�. As far as exact derivation of p�k� is concerned, one
may numerically implement �9� and �8�, i.e., by iterating �9�
and �8�, and assuming an initial 
. In most cases, we observe
that 
 converges rapidly �within 15 iterations� to a constant.

This mapping to the ZRP holds for the stochastically
growing network as well. To establish this point, let us con-
sider a generalized zero range process Z�, where a single
particle can be transferred from a site to its neighbor with
rate w�k� if and only if the site has k�� particles. A special
case Z1 is the standard ZRP. In the steady state of Z�, dis-
tribution of particles is simply 
�k�=
 j=�

k w�k�−1 up to a nor-
malization constant. If we take an ensemble of ZRP �Z��
with �=1,2 . . .�max, which may be realized by taking several
rings each having a different dynamics Z�, clearly the steady
state distribution of particles becomes


�k� = N �
�=1

�max

h����

j=�

k
1

w�j�� , �15�

where h��� is the weight of Z� in the ensemble and N is the
normalization constant. This equation may be compared with
�9� for drawing an analogy between the degree distribution
of stochastically growing networks and the ZRP. Note that
for large k���max�, p�k� solely depends on the �¯� of Eq.
�15�. Thus, asymptotic degree distribution of a growing net-
work is not affected by the stochasticity as long as mmax, the
maximum number of links a new node can make, is not too
large.

Now let us discuss how one can infer about a possible
evolution rule from any given degree distribution. Equation
�9� can be inverted to obtain

u�k� =
1

p�k��i=1

k

�h�i� − p�i�� , �16�

which is consistant with Eq. �8�. Note that by equating
the right-hand side of �8� to 
 one gets h�i�
− p�i�=u�i−1�p�i−1�−u�i�p�i�, which gives �16� when
summed for i=1 to i=k. Here, 
 appears as an �irrelevant�

multiplicative constant which can be dropped. Equation �16�
provides meaningful insight about the possible evolution rule
of any given real world network. For illustration, we take the
protein-protein interaction �PPI� network for Saccharomyces
cerevisiae �yeast� �15�. The largest connected part has N
=3930 nodes and M =7725 links. The degree distribution of
this network is shown in Fig. 1. The average degree of this
network is 3.93. To model this, we take h�m�=�i=1

3 ai�m,i,
where �ai� are constrained by the conditions �i� normaliza-
tion: a1+a2+a3=1, and �ii� average degree: 3.93=2�a1
+2a2+3a3�. We choose to work with a1=0.4, which gives
a2=0.234 and a3=0.366, and evaluate u�k� for this network
�inset of Fig. 1� using �16� which fits well with a linear
function u�k�=1.5�k−0.8�. The corresponding degree distri-
bution turns out to be p�k��k−2.2, which is a scalefree dis-
tribution as expected from a linear u�k�.

Finally, we turn our attention to the other stochastic pa-
rameter ��n�, namely, the distribution of number of nodes
joining the network during each iteration time step t. We
have seen in �9� that ��n� does not alter the degree distribu-
tion. Being in the dynamics, however, it affects the correla-
tions or the statistical properties of modular structures in the
network. To illustrate this point, we generate a network with
u�k�=k+0.5, h�m�=�m,4 and ��n�=q�n,1+ �1−q��n,5, and
measure the clustering coefficient for different q. As ex-
plained in Fig. 2, we find that the clustering coefficient
changes only marginally with q.

Our analysis here relies on the fact that Eq. �5� holds for
large networks �as t→��. Let us check the validity of �5� in
detail. From �8� it is clear that v�t� is proportional to N�t�
which can be obtained from �3�. First, we numerically evalu-
ate v�t� for a few different networks �starting from two nodes
which are connected� and compare them with the theoretical
results �3�. If the number of new nodes n is a stochastic
variable, then N�t�= n̄t+2 is linear. However, one can intro-
duce an explicit time dependence in n to get nonlinear N�t�.
For example, if n�t�=�t, we have N�t�= t3/2+2 and thus
v�t�� t3/2. In Fig. 3 we plot numerically measured v�t� in log
scale for two different cases: �a� n=0.6�n,1+0.4�n,2 and �b�
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FIG. 1. �Color online� Degree distribution for the PPI network
for Saccharomyces cerevisiae �15�. The evolution rule u�k� derived
using �16� is shown in the inset. The solid line here �inset� is a
linear fit u�k�=k−0.8, for which one expects p�k��k−2.2. A solid
line with slope −2.2 is drawn in the main figure to compare p�k�
with the theory.
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n�t�=�t, both agree well with �3�. Although N�t� is quite
different, p�k� �shown in the inset� was found to be same as
expected. For both cases the evolution rule is u�k�=k−0.5
and thus we have p�k��k−2.5. To conclude, Eq. �5� holds
quite well, except for first few iteration steps t	10. For large
networks, however, the number of nodes which join in the
first few iteration steps is vanishingly small as compared to
the size of the network, and hence does not affect the net-
work properties as a whole.

In summary, we introduce a generic model of a stochas-
tically growing network and show that this model can easily
be mapped to the ZRP, thus enabling us to derive an exact
relation between the degree distribution of the network and
its evolution function. This relation can be used to derive the
analytical form of the degree distribution for any arbitrary
evolution rule. Conversely, for a given network data we can

infer a possible evolution rule. Our evolution rule produces
exact degree distribution, as obtained from the given network
data, even for small k values. We demonstrate this by taking
an example of a real world PPI network and deriving a pos-
sible evolution rule to this network.

Based on our exact calculations we expect to obtain a
better understanding of the evolution of real world networks.
Also, since the ZRP is exactly solvable, mapping of the ZRP
with network growth models opens up a platform to study
the interplay between evolution rules and steady state degree
distribution.
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FIG. 2. �Color online� Clustering coefficient changes with a sto-
chastic parameter q �see text�. Other parameters are u�k�=k+0.5,
N=1000, m=4, ��n�=q�n,1+ �1−q��n,5, and the clustering coeffi-
cient is averaged over 1000 realizations.
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FIG. 3. �Color online� Log scale plot of v�t� for two different
cases: �a� ��n�=0.6�1,n+0.4�2,n, and �b� n�t�=�t. It is expected
from �3� and �8� that v�t� is linear in the first case, whereas for �b�
v�t�� t3/2. Solid lines with slope 1 and 1.5 are drawn for compari-
son. For both cases, u�k�=k−0.5 and m=1, and averaging is done
over 1000 realizations. The degree distribution p�k��k−2.5 �inset� is
identical for both cases.
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